Nuclear Energy

Mid-term exam solutions

19-09-2017

Problem 1. (4 pts)

Radium-226 has a half-life of 1600 years. Calculate the activity of 1 g of ²²⁶Ra.

Solution: decay constant $\lambda = \ln 2/T_{1/2} = 0.693/(1600*365*24*3600) = 1.37 \, 10^{-11} \, s^{-1}$

 $N = N_A/226 = 6.022 \ 10^{23}/226 = 2.66 \ 10^{21}$

Activity $A = \lambda N = 3.65 \ 10^{10} \ Bq$

Problem 2. (15 pts)

The picture below shows that the capture of one neutron by 238 U (T_{1/2} = 4.468 billion years) forms 239 U (T_{1/2} = 23.45 min), which in turn decays to 239 Np (T_{1/2} = 2.36 days). 239 Np then decays to 239 Pu (T_{1/2} = 24110 years).

1. Complete the reaction: $^{238}U + n \rightarrow ... \rightarrow ^{239}Pu$

2. The flux of neutrons in a reactor is $\phi = 10^{14}$ cm⁻² s⁻¹ and the radiative capture cross section for thermal neutrons if $\sigma = 2.7$ b.

Calculate the fraction of ²³⁹U nuclei that transform into ²³⁹Pu in one year (neglect neutron captures on ²³⁹U, ²³⁹Np and the fission of ²³⁹Pu). Assume that the number of ²³⁸U nuclei at t = 0 is N₀ and that there are no other nuclei present.

3. If the reactor starts with one tonne of ²³⁸U, how much ²³⁹Pu is produced?

Solution:

1.
$$^{238}U + n \rightarrow ^{239}U^* \rightarrow ^{239}Np + e^- + \overline{v} \rightarrow ^{239}Pu + e^- + \overline{v}$$

2. Let's call ²³⁸U A, ²³⁹U B, ²³⁹Np C and ²³⁹Pu D.

The creation of nuclei B is given by $\frac{dN_A}{dt} = -\lambda_A N_A$ and $\lambda_A = \sigma_{capt} \phi = 2.7 \times 10^{-24} (cm^2) \times 10^{14} (cm^{-2}s^{-1}) = 2.7 \times 10^{-10} s^{-1}$ The bateman equations are given by:

$$N_{N} = N_{0}(h_{A}e^{-\lambda_{A}t} + h_{B}e^{-\lambda_{B}t} + \dots + h_{N}e^{-\lambda_{N}t})$$

$$h_{A} = \frac{\lambda_{A}}{\lambda_{N} - \lambda_{A}} \frac{\lambda_{B}}{\lambda_{B} - \lambda_{A}} \frac{\lambda_{C}}{\lambda_{C} - \lambda_{A}} \cdots \frac{\lambda_{M}}{\lambda_{M} - \lambda_{A}}$$

$$h_{B} = \frac{\lambda_{A}}{\lambda_{A} - \lambda_{B}} \frac{\lambda_{B}}{\lambda_{N} - \lambda_{B}} \frac{\lambda_{C}}{\lambda_{C} - \lambda_{B}} \cdots \frac{\lambda_{M}}{\lambda_{M} - \lambda_{B}}$$

$$h_{N} = \frac{\lambda_{A}}{\lambda_{A} - \lambda_{N}} \frac{\lambda_{B}}{\lambda_{B} - \lambda_{N}} \frac{\lambda_{C}}{\lambda_{C} - \lambda_{N}} \cdots \frac{\lambda_{M}}{\lambda_{M} - \lambda_{N}}$$

Since the half-life of ²³⁹Pu is much larger than those of ²³⁹U and ²³⁹Np, we can consider ²³⁹Pu as stable. Therefore, $\lambda_D = 0$.

This gives:

$$h_{A} = -\frac{\lambda_{B}}{\lambda_{B} - \lambda_{A}} \frac{\lambda_{C}}{\lambda_{C} - \lambda_{A}}$$
$$h_{B} = -\frac{\lambda_{A}}{\lambda_{A} - \lambda_{B}} \frac{\lambda_{C}}{\lambda_{C} - \lambda_{B}}$$
$$h_{C} = -\frac{\lambda_{A}}{\lambda_{A} - \lambda_{C}} \frac{\lambda_{B}}{\lambda_{B} - \lambda_{C}}$$
$$h_{D} = 1$$

 $\lambda_{A} = 2.7 \ 10^{^{-10}} \ s^{^{-1}}, \ \lambda_{B} = 4.93 \ 10^{^{-4}} \ s^{^{-1}}, \ \lambda_{C} = 3.4 \ 10^{^{-6}} \ s^{^{-1}} \ \rightarrow \lambda_{A} << \lambda_{C} << \lambda_{B}$

We can then simplify the above equations further:

$$\begin{split} h_A &= -1 \\ h_B &= \frac{\lambda_A}{\lambda_B} \frac{\lambda_C}{\lambda_C - \lambda_B} = -\frac{\lambda_A \lambda_C}{\lambda_B^2} \\ h_C &= \frac{\lambda_A}{\lambda_C} \frac{\lambda_B}{\lambda_B - \lambda_C} = \frac{\lambda_A}{\lambda_C} \\ h_D &= 1 \end{split}$$

We can now write:

$$N_D = N_A(0) \left(1 - e^{-\lambda_A t} - \frac{\lambda_A \lambda_C}{\lambda_B^2} e^{-\lambda_B t} + \frac{\lambda_A}{\lambda_C} e^{-\lambda_C t}\right)$$

We can now calculate $N_D/N_A(0)$ for t = 1 year: $N_D/N_A(0) = 0.008469 \approx 0.0085$ or 0.85%

3. Starting with 1000 kg of ²³⁸U, 8.5 kg of ²³⁹Pu were produced.

Problem 3. (6 pts)

The portion of nuclear chart below shows stable nuclei in black and radioactive nuclei in

1. By what types of decay mode do you expect the blue nuclei to decay and why?

2. Same question for the purple/pink nuclei.

Solution:

- 1. Blue nuclei have an excess of protons and will likely decay by β^+ and/or by EC
- 2. Pink nuclei have an excess of neutrons and decay by β^{-} .

Problem 4. (10 pts)

Consider the following reaction:

 $n + {}^{235}U \rightarrow {}^{236}U^* \rightarrow {}^{139}Ba + {}^{95}Kr + 2n$

Calculate the Q-value of the reaction and the excitation energy of 236 U.

M(²³⁵U) = 235.0439 u M(²³⁶U) = 236.0455 u M(¹³⁹Ba) = 138.9088 u M(⁹⁵Kr) = 94.9398 u M(neutron) = 1.00866 u

Solution:

Q (236 U → 139 Ba + 95 Kr + 2n) = 167.4 MeV Q(235 U + n → 139 Ba + 95 Kr + 2n) = 173.9 MeV E(236 U*) = 173.9 – 167.4 = 6.5 MeV Or E(236 U*) can be calculated from the Q-value of the n + 235 U → 236 U* reaction.