Nuclear Energy

Mid-term exam solutions

Problem 1. (4 pts)
Radium- 226 has a half-life of 1600 years. Calculate the activity of 1 g of ${ }^{226} \mathrm{Ra}$.
Solution: decay constant $\lambda=\ln 2 / T_{1 / 2}=0.693 /(1600 * 365 * 24 * 3600)=1.3710^{-11} \mathrm{~s}^{-1}$
$N=N_{A} / 226=6.02210^{23} / 226=2.6610^{\mathbf{2 1}}$
Activity $\mathrm{A}=\lambda \mathrm{N}=3.65 \mathbf{1 0}^{\mathbf{1 0}} \mathbf{~ B q}$
Problem 2. (15 pts)
The picture below shows that the capture of one neutron by ${ }^{238} \mathrm{U}$ ($\mathrm{T}_{1 / 2}=4.468$ billion years) forms ${ }^{239} \mathrm{U}$ ($\mathrm{T}_{1 / 2}=23.45 \mathrm{~min}$), which in turn decays to ${ }^{239} \mathrm{~Np}$ ($\mathrm{T}_{1 / 2}=2.36$ days). ${ }^{239} \mathrm{~Np}$ then decays to ${ }^{239} \mathrm{Pu}$ ($\mathrm{T}_{1 / 2}=24110$ years).

1. Complete the reaction: ${ }^{238} \mathrm{U}+\mathrm{n} \rightarrow \ldots \rightarrow{ }^{239} \mathrm{Pu}$
2. The flux of neutrons in a reactor is $\phi=10^{14} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ and the radiative capture cross section for thermal neutrons if $\sigma=2.7 \mathrm{~b}$.

Calculate the fraction of ${ }^{239} \mathrm{U}$ nuclei that transform into ${ }^{239} \mathrm{Pu}$ in one year (neglect neutron captures on ${ }^{239} \mathrm{U},{ }^{239} \mathrm{~Np}$ and the fission of ${ }^{239} \mathrm{Pu}$). Assume that the number of ${ }^{238} \mathrm{U}$ nuclei at $\mathrm{t}=0$ is N_{0} and that there are no other nuclei present.
3. If the reactor starts with one tonne of ${ }^{238} \mathrm{U}$, how much ${ }^{239} \mathrm{Pu}$ is produced?

Solution:

1. ${ }^{238} U+n \rightarrow{ }^{239} U^{*} \rightarrow{ }^{239} \mathrm{~Np}+e^{-}+\bar{v} \rightarrow{ }^{239} \mathrm{Pu}+e^{-}+\bar{v}$
2. Let's call ${ }^{238} \cup \mathrm{~A},{ }^{239} \mathrm{UB},{ }^{239} \mathrm{~Np} \mathrm{C}$ and ${ }^{239} \mathrm{PuD}$.

The creation of nuclei B is given by $\frac{d N_{A}}{d t}=-\lambda_{A} N_{A}$ and

$$
\lambda_{A}=\sigma_{\text {capt }} \phi=2.7 \times 10^{-24}\left(\mathrm{~cm}^{2}\right) \times 10^{14}\left(\mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)=2.7 \times 10^{-10} \mathrm{~s}^{-1}
$$

The bateman equations are given by:
$N_{N}=N_{0}\left(h_{A} e^{-\lambda_{A} t}+h_{B} e^{-\lambda_{B} t}+\ldots+h_{N} e^{-\lambda_{N} t}\right)$
$h_{A}=\frac{\lambda_{A}}{\lambda_{N}-\lambda_{A}} \frac{\lambda_{B}}{\lambda_{B}-\lambda_{A}} \frac{\lambda_{C}}{\lambda_{C}-\lambda_{A}} \ldots \frac{\lambda_{M}}{\lambda_{M}-\lambda_{A}}$
$h_{B}=\frac{\lambda_{A}}{\lambda_{A}-\lambda_{B}} \frac{\lambda_{B}}{\lambda_{N}-\lambda_{B}} \frac{\lambda_{C}}{\lambda_{C}-\lambda_{B}} \ldots \frac{\lambda_{M}}{\lambda_{M}-\lambda_{B}}$
$h_{N}=\frac{\lambda_{A}}{\lambda_{A}-\lambda_{N}} \frac{\lambda_{B}}{\lambda_{B}-\lambda_{N}} \frac{\lambda_{C}}{\lambda_{C}-\lambda_{N}} \ldots \frac{\lambda_{M}}{\lambda_{M}-\lambda_{N}}$

Since the half-life of ${ }^{239} \mathrm{Pu}$ is much larger than those of ${ }^{239} \mathrm{U}$ and ${ }^{239} \mathrm{~Np}$, we can consider ${ }^{239} \mathrm{Pu}$ as stable. Therefore, $\lambda_{D}=0$.

This gives:

$$
\begin{aligned}
& h_{A}=-\frac{\lambda_{B}}{\lambda_{B}-\lambda_{A}} \frac{\lambda_{C}}{\lambda_{C}-\lambda_{A}} \\
& h_{B}=-\frac{\lambda_{A}}{\lambda_{A}-\lambda_{B}} \frac{\lambda_{C}}{\lambda_{C}-\lambda_{B}} \\
& h_{C}=-\frac{\lambda_{A}}{\lambda_{A}-\lambda_{C}} \frac{\lambda_{B}}{\lambda_{B}-\lambda_{C}} \\
& h_{D}=1
\end{aligned}
$$

$$
\lambda_{A}=2.710^{-10} \mathrm{~s}^{-1}, \lambda_{\mathrm{B}}=4.9310^{-4} \mathrm{~s}^{-1}, \lambda_{\mathrm{C}}=3.410^{-6} \mathrm{~s}^{-1} \rightarrow \lambda_{\mathrm{A}} \ll \lambda_{\mathrm{C}} \ll \lambda_{\mathrm{B}}
$$

We can then simplify the above equations further:

$$
\begin{aligned}
& h_{A}=-1 \\
& h_{B}=\frac{\lambda_{A}}{\lambda_{B}} \frac{\lambda_{C}}{\lambda_{C}-\lambda_{B}}=-\frac{\lambda_{A} \lambda_{C}}{\lambda_{B}^{2}} \\
& h_{C}=\frac{\lambda_{A}}{\lambda_{C}} \frac{\lambda_{B}}{\lambda_{B}-\lambda_{C}}=\frac{\lambda_{A}}{\lambda_{C}} \\
& h_{D}=1
\end{aligned}
$$

We can now write:

$$
N_{D}=N_{A}(0)\left(1-e^{-\lambda_{A} t}-\frac{\lambda_{A} \lambda_{C}}{\lambda_{B}^{2}} e^{-\lambda_{B} t}+\frac{\lambda_{A}}{\lambda_{C}} e^{-\lambda_{C} t}\right)
$$

We can now calculate $N_{D} / N_{A}(0)$ for $t=1$ year: $N_{D} / N_{A}(0)=0.008469 \sim 0.0085$ or 0.85%
3. Starting with 1000 kg of ${ }^{238} \mathrm{U}, 8.5 \mathrm{~kg}$ of ${ }^{239} \mathrm{Pu}$ were produced.

Problem 3. (6 pts)
The portion of nuclear chart below shows stable nuclei in black and radioactive nuclei in
 purple/pink and in blue.

1. By what types of decay mode do you expect the blue nuclei to decay and why?
2. Same question for the purple/pink nuclei.

Solution:

1. Blue nuclei have an excess of protons and will likely decay by β^{+}and/or by EC
2. Pink nuclei have an excess of neutrons and decay by β^{-}.

Problem 4. (10 pts)
Consider the following reaction:
$\mathrm{n}+{ }^{235} \mathrm{U} \rightarrow{ }^{236} \mathrm{U}$ * $\rightarrow{ }^{139} \mathrm{Ba}+{ }^{95} \mathrm{Kr}+2 \mathrm{n}$
Calculate the Q -value of the reaction and the excitation energy of ${ }^{236} \mathrm{U}$.
$M\left({ }^{235} U\right)=235.0439 u$
$\mathrm{M}\left({ }^{236} \mathrm{U}\right)=236.0455 \mathrm{u}$
$M\left({ }^{139} \mathrm{Ba}\right)=138.9088 \mathrm{u}$
$\mathrm{M}\left({ }^{95} \mathrm{Kr}\right)=94.9398 \mathrm{u}$
M (neutron) $=1.00866 \mathrm{u}$

Solution:

$\mathrm{Q}\left({ }^{236} \mathrm{U} \rightarrow{ }^{139} \mathrm{Ba}+{ }^{95} \mathrm{Kr}+2 \mathrm{n}\right)=167.4 \mathrm{MeV}$
$\mathrm{Q}\left({ }^{235} \mathrm{U}+\mathrm{n} \rightarrow{ }^{139} \mathrm{Ba}+{ }^{95} \mathrm{Kr}+2 \mathrm{n}\right)=173.9 \mathrm{MeV}$
$E\left({ }^{236} U^{*}\right)=173.9-167.4=6.5 \mathrm{MeV}$
Or $E\left({ }^{236} U^{*}\right)$ can be calculated from the Q-value of the $n+{ }^{235} U \rightarrow{ }^{236} U^{*}$ reaction.

